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Abstract  

Contaminant studies in cetaceans typically focus on males due  to confounding effects of 

reproductive status  in females  and maternal offloading.   However, an improved understanding of 

contaminant burdens in female cetaceans is  needed to better assess potential impacts to 

populations.  In this study, 36  blubber biopsy samples of female humpback whales (Megaptera 

novaeangliae) from the Gulf of Maine were analyzed to examine contaminant loads across 

females of different ages.  Sampled individuals were individually-identified from longitudinal 

studies and assigned to age class (i.e., adult, subadult, juvenile, calf).  Analysis was performed 

using gas chromatography/mass spectrometry for persistent organic pollutants (POPs) including 

polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethanes (DDTs), chlordanes 

(CHLDs), polybrominated diphenyl ethers  (PBDEs), hexachlorocyclohexanes (HCHs), and other 

organochlorine pesticides (OCPs). The most abundant POPs  measured were PCB congeners, 

with summed values ranging from 380 to 12,300 ng/g, lipid weight, well below the threshold 

value for adverse health effects. We found significant differences in mean values between adults 

and juveniles and between adults and subadults, with the exception of the less persistent HCHs 

for the latter. We also found significant differences in mean levels of ∑HCHs and ∑other OCPs 

between the juveniles and subadults.  Changes over age are consistent with maternal offloading 

and potentially important for evaluating population health and viability.  
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1.  Introduction  

Persistent organic pollutants (POPs) are anthropogenic  toxic  chemicals  that persist  in the 

environment, are resistant to metabolism  and degradation, and  can be circulated  globally  via 

atmospheric transport  and ocean currents. Among the different classes of POPs are 

polychlorinated biphenyls (PCBs), various organochlorine pesticides  (OCPs), including 

dichlorodiphenyltrichloroethanes (DDTs), chlordanes (CHLDs), hexachlorocyclohexanes 

(HCHs),  and the flame retardants, polybrominated diphenyl ethers (PBDEs).  

Many POPs continue to be measured in environmental samples despite having been 

banned for production or open use in the US and many other countries  since the 1970s  (e.g. 

Stockholm  Convention,  (EPA, 2017; Vijgen et al., 2011). Exposure to POPs has been associated 

with adverse health effects such as immune dysfunction, increased susceptibility to disease, 

reproductive and endocrine impairment, and neurotoxicity. Such effects have been confirmed in 

marine mammal species, including: harbor porpoises (Phocoena phocoena), harbor  seals (Phoca 

vitulina), California sea lions (Zalophus californianus), beluga whales (Delphinapterus leucas), 

grey seals (Halichoerus grypus) and ringed seals (Pusa hispida) (Bergman and Olsson, 1985; 

Beland et al., 1993; Hammond et al., 2005; Ylitalo et al., 2005a; Murphy et al., 2015).   The 

primary route of POP exposure in marine mammals is through diet and these lipophilic 

compounds can bioaccumulate to relatively high concentrations  in their blubber. As a result, 

there is a cause for concern, especially for long-lived marine mammals such as cetaceans.  

Mysticete  cetaceans feed at a lower trophic level than odontocetes and are  therefore 

assumed to be at a lower risk of  adverse health effects from  POPs, even when residing in  the 

same habitats  (Aguilar et al.,  1999; Pinzone et al.,  2015).  However, exposure to lower  

concentrations may nevertheless be significant in light of the fact that mysticetes are long lived, 

have  large lipid stores, and can offload  POPs from  mother to calf during gestation and lactation 

(maternal offloading; Aguilar et al., 1999; Rowe 2008). It is important to also assess the 

exposure to and impacts of environmental contaminants  when  evaluating the health of mysticete 

populations.   However, due to the confounding effects of accumulation through diet and 
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maternal offloading, marine mammal studies commonly focus on measuring contaminant 

concentrations in immature animals or adult males and therefore POPs data is more limited for 

adult female marine mammals.  

The Gulf of Maine, off the east coast of North America, is the site of long-term 

industrialized activity as well as long-term humpback whale population studies and prior 

humpback whale toxicological studies (Elfes et al. 2010, Ryan et al. 2013). The objectives of 

the current study were to extend that work by characterizing for the first time POP 

concentrations in blubber of female humpback whales across age classes as well as to better 

characterize maternal offloading of these compounds to their offspring. 

2. Materials and Methods 

Sample collection 

Blubber samples were collected from 36 free-ranging female humpback whales in the 

Gulf of Maine (western North Atlantic Ocean) between 2004 and 2012 (Figure 1). Samples were 

collected from the lateral flank by biopsy sampling techniques (Palsbøll et al. 1991). Samples 

were kept on ice in the field and then frozen at -80 degrees Celsius until analysis. A long-term 

photo-identification catalog of individual Gulf of Maine humpback whales (Center for Coastal 

Studies, Provincetown, MA) was used to determine age class of individuals at the time of 

sampling. Calves were dependent offspring within the first year of birth, and juveniles when 

independent but no more than four years of age. Subadult females had reached the minimum 

documented age at first calving in this population (age 5, Clapham 1992; Robbins 2007) but had 

not yet observed with a calf themselves. Females were categorized as adults when known to 

have given birth to at least one calf.  For three individuals, samples were available from two 

different ages. 

Chemical analyses 

POPs were extracted from samples and analyzed for POPs using gas 

chromatography/mass spectrometry (GC/MS) as described in Sloan et al., 2014. Prior to 

extraction of POPs with dichloromethane using an automated pressurized solvent extractor, 

blubber samples (0.1–0.3 g) were mixed with drying agents (sodium sulfate and magnesium 

sulfate) and spiked with a surrogate standard (PCB 103; 75 ng). A single stacked gravity flow 
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silica gel/alumina column was used to remove any highly polar compounds from the sample. 

POPs were separated from the bulk lipid and other biogenic material present in each sample 

using high performance size exclusion liquid chromatography. After separation of analytes 

using a 60 m Agilent DB-5 GC capillary column, they were determined on an Agilent 5973 MS 

that was operated in selected ion monitoring and electron impact mode. Specificsof GC 

operating conditions and monitored ions can be found in Sloan et al., 2014. The instrument was 

calibrated using ten levels of standards of known concentrations. All blubber contaminant 

concentrations were reported in ng/g, lipid weight. The concentrations of PCB congeners 17, 18, 

28, 31, 33, 44, 49, 52, 66, 70, 74, 82, 87, 95, 99, 101/90, 105, 110, 118, 128, 138/163/164, 149, 

151, 153/132, 156, 158, 170, 171, 177, 180, 183, 187/159/182, 191, 194, 195, 199, 205, 206, 

208, and 209 were used to calculate summed PCBs (ΣPCBs).. The concentrations of o,p’-DDD, 

p,p’-DDD, o,p’-DDE, p,p’-DDE, o,p’-DDT, and p,p’-DDT were used to calculate summed DDTs 

(ΣDDTs). The concentrations of heptachlor, oxychlordane, β-chlordane, nona-III-chlordane, α-

chlordane, trans-nonachlor, and cis-nonachlor were used to calculate summed chlordanes 

(ΣCHLDs). The concentrations of PBDE congeners 28, 47, 49, 66, 85, 99, 100, 153, 154, 155, 

and 183 were used to calculate summed PBDEs (ΣPBDEs). The concentrations of α-

hexachlorocyclohexane, β- hexachlorocyclohexane, and γ-hexachlorocyclohexane (lindane) were 

used to calculate summed hexachlorocyclohexanes (ΣHCHs). The concentrations of 

hexachlorobenzene (HCB), aldrin, mirex, and endosulfan I were used to calculate summed other 

OC pesticides (ΣOCPs). 

Lipid content 

A 1.5 mL extract subsample was aliquoted for determination of percent lipid gravimetric, as 

well as to measure lipid classes using thin-layer chromatography with flame ionization detection 

(TLC/FID) (Ylitalo et al., 2005b; Sloan et al. 2014). Lipophilic POP concentrations were 

normalized using percent lipid of each blubber sample. Lipid class profiles (i.e., sterol esters/wax 

esters, triglycerides, free fatty acids, cholesterol, phospholipids/polar lipids) were evaluated 

because the accumulation of lipophilic POPs may be influenced by the proportion of neutral 

lipids (e.g., triglycerides) in the blubber (Krahn et al., 2004). 

Quality assurance 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

130

135

140

145

150

155

126 A  solvent (dichloromethane)  method blank and a National Institute of Standards and 

Technology (NIST) whale blubber Standard Reference Material (SRM 1945) were analyzed with 

each humpback whale blubber sample set.  No more than five  analytes  exceeded 2 times the 

lower limit of quantitation  (LOQ)  for each method blank. For each sample set  (10-12 blubber 

samples), concentrations of ≥ 70% of individual analytes that were measured in the NIST SRM 

1945 were within 30%  of the upper and lower  ends  of the 95% confidence interval range of the 

published NIST certified concentrations. The LOQs ranged from < 0.37  to <  10  ng/g wet weight  

for the PCBs, < 0.37 to < 9.9  ng/g wet weight for the organochlorine pesticides (DDTs, CHLDs, 

HCB, aldrin, mirex, and endosulfan I), and < 0.36  to <  2.6  ng/g wet weight for the PBDEs. The 

percent recoveries of the surrogate standard in the field and associated quality assurance samples  

ranged from  89% to 109%. Other quality control  elements met established laboratory criteria 

(Sloan et al., 2019).  

 

Statistical analyses  

Prior to statistical analyses, percent lipid results were arcsine square  transformed and 

summed concentrations  of POPs were log transformed to obtain a more normal distribution  and 

equal variances. Analysis of variance (ANOVA) and the Tukey-Kramer honestly significance 

difference test (HSD) were  used to  determine if the mean concentrations of the various classes of  

POPs were significantly different among the four age classes  with a level of significance at P ≤ 

0.05. Statistical analyses were completed using Statistical analyses were completed using R 

(version R-4.0.4).  

3.  Results and Discussion  

Concentrations of summed POPs based on whale age class are reported in Table 1.  All 

POP classes were detected  in every individual whale, with concentrations ranging from  6.2  

(∑HCHs) to 12,300 ng/g, lipid weight (∑PCBs). The rank order of POP  classes  determined in 

the whale blubber were PCBs > DDTs > PBDEs    CHLDs  > other OCPs > HCHs. The mean 

blubber POP levels  (ng/g lipid weight)  for the four age classes of the female humpback whales  

ranged from 1,700 to 5,900 for ∑PCBs, 400 to 2,100 for ∑DDTs, 210 to 980 for ∑CHLDs, 190 

to 980  for ∑PBDEs,  34  to 170 for ∑other OCPs, and 20  to 64 for ∑HCHs (Table  1).  The 

predominant  analytes contributing to each of the corresponding summed values for each age 

class were as follows: PCB 153 (16 to 19%) and PCB 138 (13  to 15%) to  ∑PCBs, p,p’-DDE (67  
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to 72%) to ∑DDTs, trans-nonachlor (58 to 60%) to ∑CHLDs, PBDE 47 (66 to 75%) to 

∑PBDEs, α-hexachlorocyclohexane (46 to 61%) and β -hexachlorocyclohexane (29 to 42%) to 

∑HCHs, and HCB (88 to 97%) to ∑other OCPs. Mean blubber levels reported previously in 

adult males from this humpback whale population (Elfes et al., 2010) were up to 2 to 13 times 

higher than the mean values of females in the current study. 

The lipid content of the blubber samples decreased with animal age class, being highest 

in calves (46.4%) and lowest in adults (32.6%, Table 1). The lipids measured in the biopsy 

blubber samples consisted primarily of neutral triglycerides (85 to 100% of total lipid). In 

addition to triglycerides, blubber samples from a juvenile and nursing adult contained 7.4% and 

14.6% phospholipids respectively. The near homogenous lipid class profiles of the female 

humpback whale blubber samples across all age classes indicate that POP concentrations were 

not biased due to lipid composition. 

Association between POPs and lipids with age class 

Mean summed POP values differed significantly (p < 0.05) among the four age classes of 

female whales, with juveniles having significantly higher levels than the mean values in adults 

(for all 5 POP classes and other OCPs) and subadults (for HCHs and other OCPs). In addition, 

subadult females had significantly higher (p < 0.04) mean summed POP values than adult 

females for all POP classes except HCHs. No other significant differences (p > 0.05) in mean 

POP values were found among the age classes. The changes in the concentrations of POPs from 

one age class to the next are likely due to a combination of factors. Additive factors can be 

attributed to accumulation via diet and maternal transfer of contaminants (Aguilar et al. 1999). 

Previous cetacean studies have shown that lipophilic compounds are transferred from mother to 

calf primarily during lactation and, to a lesser extent during gestation (Cockcroft et al., 1989, 

Krahn et al., 2009). Birth order can also influence concentrations of lipophilic contaminants 

such as PCBs and DDTs, with first born animals having higher levels than non-first born 

(Cockcroft et al., 1989; Ylitalo et al., 2001; Wells et al., 2005). In addition to maternal 

offloading, other factors that can decrease POP concentrations include biotransformation as well 

as dilution related to growth or changes in blubber lipid content (Aguilar et al., 1999). 

Comparison of the measured POP values between adults and calves indicated that there 

was a 1.1 to 2.8 times greater concentration in calves. The initial summed POP levels of the 
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calves are assumed to be primarily from lactational and to a lesser extent, gestational transfer 

from their mothers.  The decrease in summed POP concentrations between the juvenile and the 

subadult age classes was unexpected. There is a possibility that some individuals classified as 

subadults were actually adults that were missed in reproductive years or experienced calf 

mortality prior to being seen. Such individuals could therefore have already undergone some 

contaminant offloading. Although both adult and subadults likely accumulate POPs through 

their diet, the decrease in summed POP levels between these age classes suggests maternal 

offloading may be the predominate factor that determines POP levels in adult females. In the 

current study, the youngest sampled parous female was at least 7 years and the oldest sampled 

subadult was 12 years. The summed concentrations of the five POP classes generally decreased 

with age after age 4 and became relatively constant (Figure 2). 

We also examined the percent contribution of PCB homologs to ∑PCBs to determine if 

there were qualitative differences among the four age classes of whales (Figure 3). PCB 

congeners were grouped according to the number of chlorine atoms [e.g., pentachlorinated 

congeners (5 Cl atoms), hexachlorinated congeners (6 Cl atoms)]. We found that the 

composition of the different PCB homolog groups varied slightly among the four age classes, 

with a tendency for the higher chlorinated homologs (i.e., heptachlorobiphenyls, 

octachlorobiphenyls, nonachlorobiphenyls) to be proportionately more abundant in adults and 

less in the calves. In contrast, hexachlorobiphenyls, the homolog group with the most detected 

congeners, were proportionately more abundant in calves and progressively decreased between 

the age classes (Figure 3). Previous cetacean studies have shown that higher chlorinated PCBs 

are not as readily offloaded from mother to offspring. (Aguilar et al., 1999; Yordy et al., 2010). 

The age associated decrease in pentachlorobiphenyls may be a consequence of growth dilution 

and/or elimination such as through biotransformation. 

Changes in POPs determined from repeat samples and other studies 

Age-related changes in ∑POPs concentrations were further evaluated based on three 

female humpback whales sampled twice, each more than a year apart (Figure 4). 

These results suggest that POP levels initially increase with age, peaking around age 4-5 and 

then continually decrease with age.  These results highlight how age and other life history factors 
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218 at time of sampling are important variables to consider when comparing  POP  levels in  female 

humpback whales  with prior studies.  

Blubber  POP concentrations  reported  in  the current study were compared with values  

reported previously in  humpback whales from the western North Atlantic, eastern North Atlantic, 

southwestern Indian Ocean, and the western Antarctic waters (Metcalf et al. 2004;  Elfes et al., 

2010; Ryan et al., 2013;  Dorneles et al., 2015;  Das et al., 2017, Table 2). Mean ∑PCB levels in 

adult females from the current study were approximately 1.9  to  630 times higher  than levels in  

adult females from other populations, with  the lowest levels reported in whales from the South 

Western Indian Ocean. Mean ∑PCBs levels  determined in  two  calves in the  current  study were 

2.9 times higher than levels measured in calves  from the Gulf of St.  Lawrence (Metcalfe et al.,  

2004).   Mean ∑PCBs levels in adult females were higher  than levels in adult males from the 

other studies,  with the exception of those collected from the same sampling region  (Elfes et al., 

2010).  

The highest observed PCB  concentrations in the present study are below the most widely 

used threshold of 17,000 ng/g, lipid weight  for onset of adverse effects in aquatic  mammals  

(Kannan et al. 2000). However, a more recent study has suggested the threshold may be lower at 

9,000 ng/g,  lipid weight (Jepson et al. 2016). This lower threshold value is within the range of  

observed values  in juvenile whales (Table  1). An added concern is the increased sensitivity of 

neonatal and juvenile life stages  towards perturbations in thyroid hormone action (Zoeller sand 

Rovett 2004), which is one of the known effects of PCB exposure in marine mammals (Brouwer  

et al. 1989).  Estimates of toxicity threshold values integrate results from many studies and 

generally are not specific for juvenile life stages nor fully consider potential synergistic 

interactions with other POPs present in the whales. Thus, toxicity thresholds for the actual 

mixture of POPs may be much lower, especially for juveniles that are potentially more sensitive 

and yet have the highest levels of contaminants in humpback whales.  

 

4.  Conclusion  

In summary,  POPs  varied with age class in  blubber samples  from  female humpback whales 

from the Gulf of Maine.   Among  the five  POP classes, mean summed POP levels were highest in 

juveniles  and subadults  and lowest  in adults. Among  the four age classes, POP mean 

concentrations followed the order ∑PCB > ∑DDTs > ∑CHLDs > ∑PBDEs > other  OCPs and 
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249 HCHs. Due to the confounding effects of maternal offloading, POPs data collected from  female  

marine mammals is less common than that of males,  but  due to adverse health effects such as 

increased susceptibility to disease, immune and reproductive dysfunction and endocrine 

impairment, is important  in assessing the health of a population. In addition, POP concentration 

data, such as those reported in the current study, can be used to  develop models that can help 

determine the potential  impacts  of these toxic compounds on population growth of cetaceans  

(Hall et al.,  2018).  
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